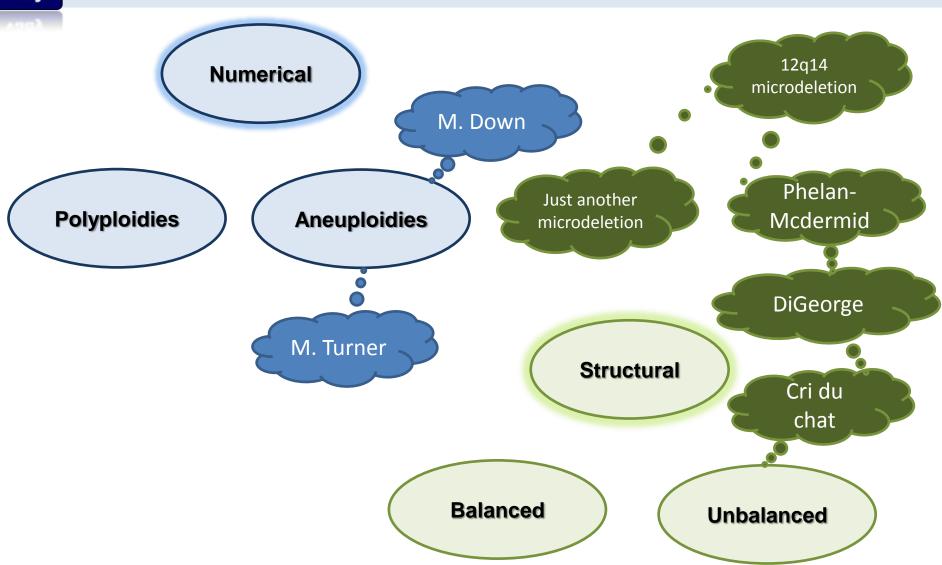
Novel submicroscopic chromosomal abnormalities: challenges for clinical management and surveillance

<u>Antonín Šípek Jr</u>

Institute of Medical Biology and Genetics, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic

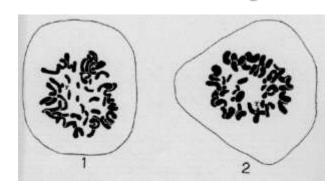
Department of Medical Genetics, Thomayer Hospital, Prague, Czech Republic

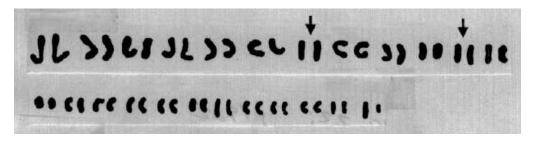
National Registry of Congenital Anomalies, Prague, Czech Republic

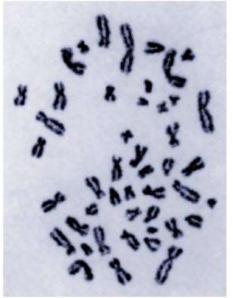


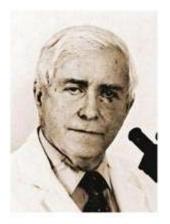
http://www.vrozene-vady.cz/

Chromosomal aberrations




Chromosomes


23 chromosome pairs


19th century

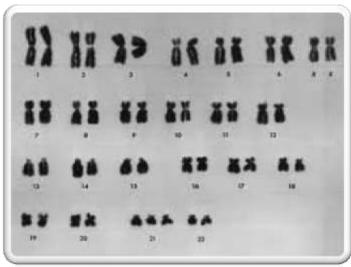
Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

Copyright © 2000 Nature Publishing Group Nature Reviews | Genetics

Copyright © 2006 Nature Fuhishing Group Nature Reviews | Genetics

1956

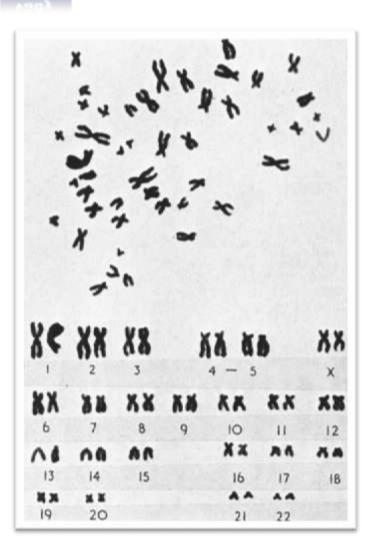
Down syndrome



John Langdon Down - 1866

Observations on an Ethnic Classification of Idiots

Jérôme Lejeune – 1959

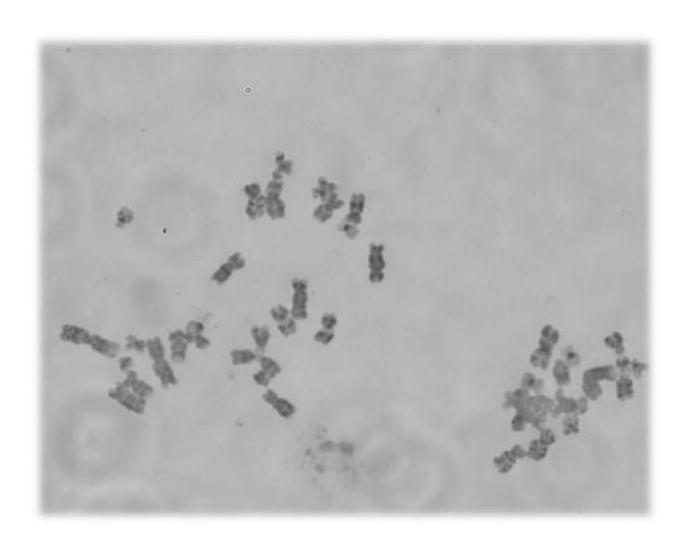

Etude des chromosomes somatiques de neuf enfants mongoliens

Cri du chat syndrome

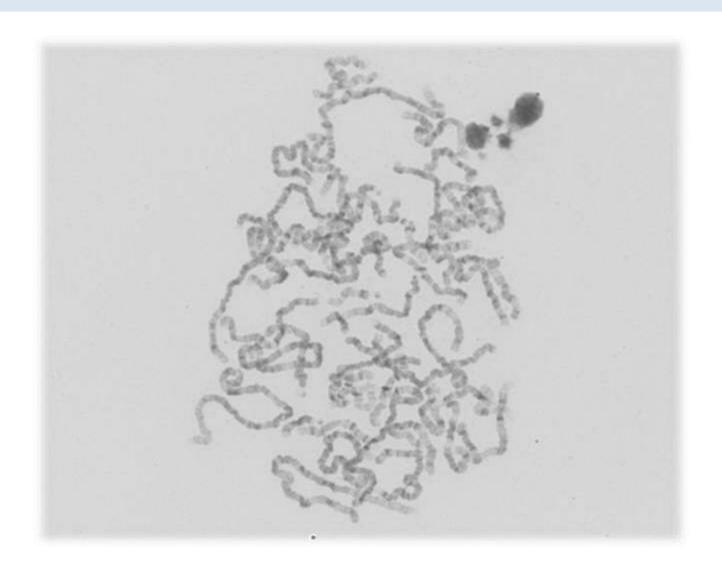

Jérôme Lejeune – 1963

3 Cases of partial deletion of the short arm of chromosome 5

Classical staining



G-banding



G-banding (CVS)

HRT

FISH

Proc. Natl Acad. Sci. USA Vol. 76, pp. 4381–4385, July 1983 Genetics

Immunological method for mapping genes on *Drosophila* polytene chromosomes

fiortis-labeled DNA/anti-biotis/fluoressence microscopy/immanageroxidase localizationi

PENNINA R. LANGER-SAFER*1, MICHAEL LEVINE*, AND DAVID C. WARD*1

Department of "Human Granten and Obtainede Ringlowin Rockensity, Tale Coverate School of Medicine, 202 Cedar Street, New Hurte, Commencial MEEA Communicated by Alam Coren, April 5, 1982

ARSTRACT A method is described for localizing DNA segeneroe bybridized in abs in Droscopida polystos chromoscose. The procedure utilizes is holte dabied assing of TTP dat in an beincorporated expressionly in 10 NS, probes by mick-translation, then hyberitanizes to site, the hests melecular in the probe stream in the probest of the process of the probest of the probest servities. The the of briedination is fore absential electric architecture, by the utilized procession of the probest of the probest of the translation of the procession of the probest of the laterariably percentage. When resolved with Circum staining, the immosperentiale electric method provide a permanent record that is intuited for detailed extensive analysis. This immanishing approach efforts from a shourings over recoverainment and the proposition of the procession of the procession of the time recognized to electronic the tast of hybridization is decreased markedly, (if histis-labeled grades are themselved tablet and give appear to produce less background noise than do radiolabeled probes, and (ip) the resolving power is equal to and other generation that their red autoreaflographically.

In the hybridization, initially developed by Gall and Parkus (1) and John 1-al. (2), has present to be a valuable corrido for determining the colladar or chromosomal location of hybridized ancides code (3-10). Standard not the hybridization persons are ancideabeted RNA or DNA probes and antimallographic methods of detection or quantification. By using probes of high specific activity under conditions such that hybridization "networks" are formed (3-12), it is now possible to localize unique requirects in mammalian chromosome spreads after astrondographic expanses of 5-22 days (9, 10). However, the inherent translation of midolateded probes—earthly chronical labelity and disposal problem—make it desirable to have semistron methods for denocing polymaciotals sequences that do not rely on the use of radiotatospec, especially for rentine applications in chains medicion.

Several groups have attempted to develop such procedures. Chevag et al. (12 generated a fluorescent signal by outpilled formation of the several signal by outpilled intermediates to the several signal were also produced by Budius and Stellar (14 by using authorism signal money authorism to conjunction with an immunofluorescent signal were also produced by Budius and Stellar (14 by using authorism gazant DAA-RNA shortes in conjunction with an immunofluorescent simpledy suscissis and by Busiums et al. [15-17] who must BNAs with very labeled at the 25 cml with fluorescent or sholkarine. Davidson and susceints (18-20) chemically contained below to RNA with cyloricomae or polysuines bridges and used these ENA-shotts completes as injectionation pursbet. The sites of thybridization were virtualized.

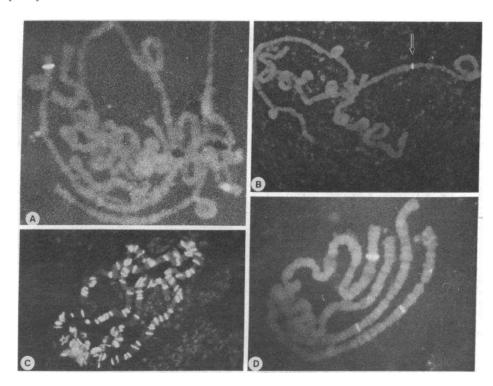
The publication costs of this article were defrayed in part by page charge payment. This article must therefore be borely marked "advertisences" in accordance with 18 U. S. C. SUTH solely to indicate this fact.

in the efectors microscope through the binding of avoids decrime or arotho-methacrylate aphene. We and Davidson (21) recordly described an additional methad for goes mapping on Drouph-sip polytetic chroscopeurs by using the efectors sistencepe. Collectial gold apheres were constant with protein and polytificially hierorisapsen DNA and used to identify the behavilantous sixes of polytiA, valied Droupshide DNA protein. Although cost of these approaches was at least partially successful, a simpler and more general method for detecting non-consideratively inheled DNA or RNA protein would be described.

The specificity and treaterly of the biotim-avidia internations

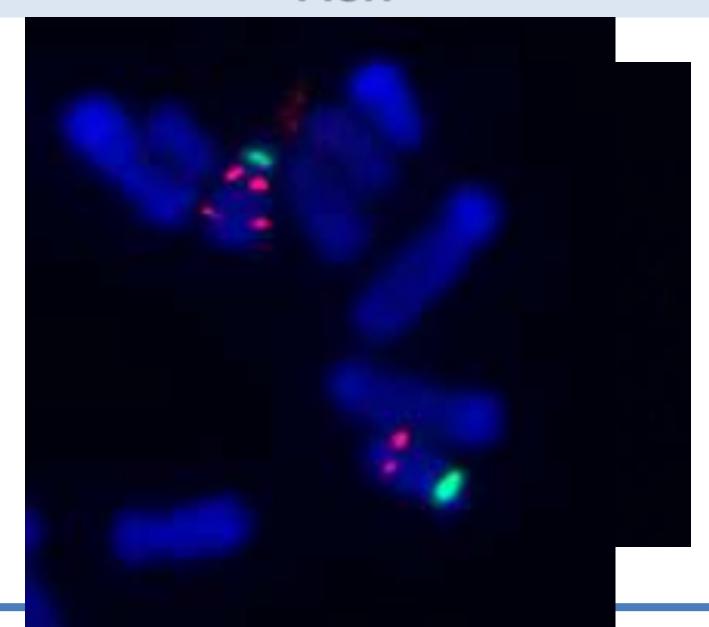
The specificity and tenacity of the biotin-soldin interaction (20) makes biotin an attractive candidate as an affinity required to tagging nucleic wish. We recently reported the synthesis of dUTF and UTF analogs that contain a health nucleotic evidently attached to the C-5 position of the pyrenidate ring through an allylamine insider area and demonstrated that these nucleotides containing an afficient substant for various DNA or RNA polymerases in other (23). In addition, biotin-substituted polymericetides were shown to have destauration and reasonation characteristics that were compatible with their use as hybridization probes (23).

In this report, we describe the first stages in the development of a generalized method for in 14th hybridization hased on historical polymerlocities as specifically applied to Developidal polytene shoutocomes. A preliminary account of this work was presented elsewhere (24).


MATERIALS AND METHODS

Standard musiconide S'-triphosphates were obtained from P-L. Biochemisch. Radelalteiled composands were product of New England Nouther or American. Enchemisch erst DNA polymerase I was gerränsed from Boehringer Massibetin. Etg. white seifel. bolin. evaluation, demanderuntiles, and flasher-base reagent were obtained from Signas. Photomococin-labeled gast aut-rabbit [6] GPTC-GHI[6], and gost aut-rabbit [6] Composand from Missibetin observation personales were purchased from Missibetin Polymerase conjugated to hoservation personales were purchased from Missibetin and Composand from Missibetin and Compo

anti-subbit [6]; was the gift of P. Nakasa.
Flow of the claused DNAs used in these studies (ADm 117,
ADm 122, ADm 80, ADm 104, and ADm 804 encode genes that
are specifically expressed in the fix bodies of third-starts larvae
(20), They were obstanced from a collection of randockly theared
Dosephile resisrangerer genomic DNAs fragments assured
and the Charred a phage vector (90). The Dresephile DNAs incl.


Abbreviation: F/NeCl. phosphate-buffered saline: NeCl/Cit. standard saline oitsate (0.15 M NeCl/U.015 M sedion citrate: PTTC-CeffigG, fluorescents inchineyasute-labeled goat auto-sidot (pG. kb.

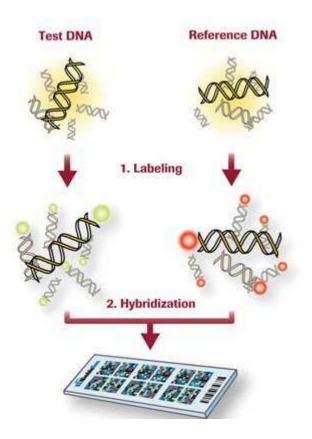
Present address: Dept. of Cell Biology, Roche Institute of Molocular Biology, Nutley, NJ 07110. Langer-Safer, P.R., Levine, M. a Ward, D. C. (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 79(14):4381–4385.

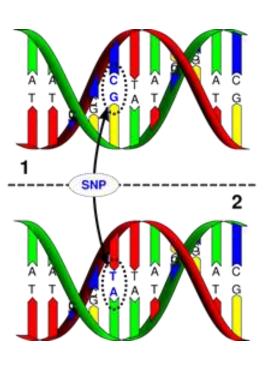
FISH

Array methods – Main features

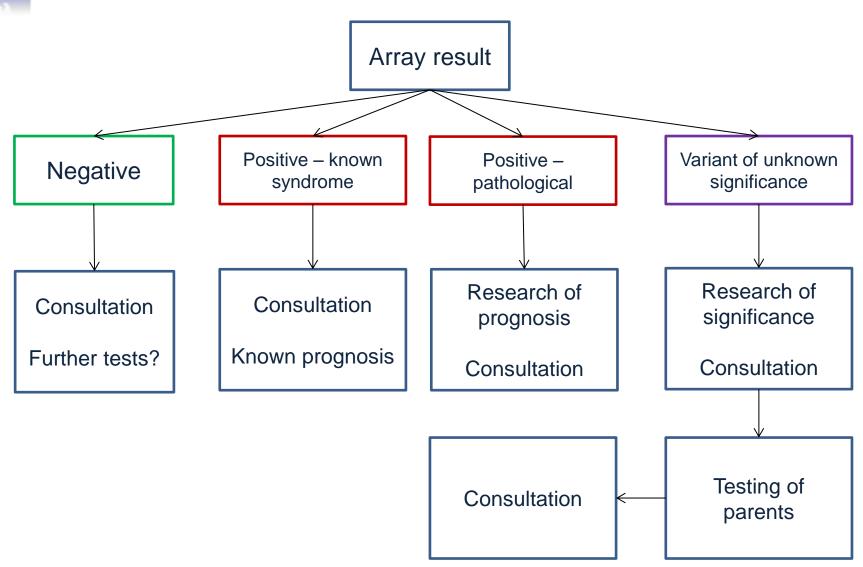
- Whole genome examination for submicroscopic chromosomal copy number variants (deletions/duplications).
- High resolution (up to tens of kBs in gene rich areas).
- SNP-array can detect UPD or LOH.
- Troubles detecting mosaicism.
- Impossible to detect true balanced aberrations (no image of karyotype).
- Challenging for interpretation.

FISH vs. Array




Array Methods

Array-CGH



SNP-Array

Strategy

Vrozené VUS – Variants of unknown significance

- Submicroscopic chromosomal copy number variants.
- Not listed in lists of benign variants.
- Not listed in lists of proved pathological changes.
- Poor or none correlations in databases.
- Extremely hard for interpretation.
- "unexpected result"
- Testing of relatives (parents) "can" be useful.

Vrozené VUS – Variants of unknown significance

Questions:

Does that cause the impariment?

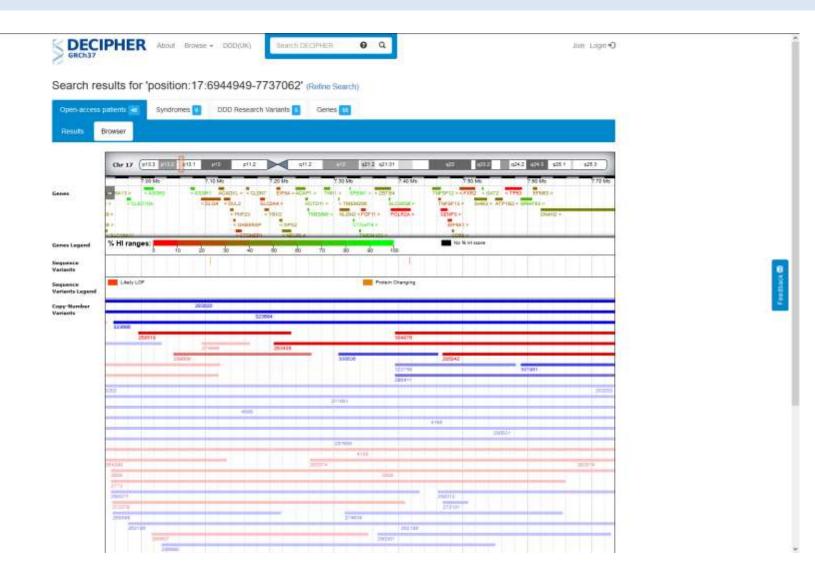
What shall we tell the parents?

They want another child! So what shall we tell them!?

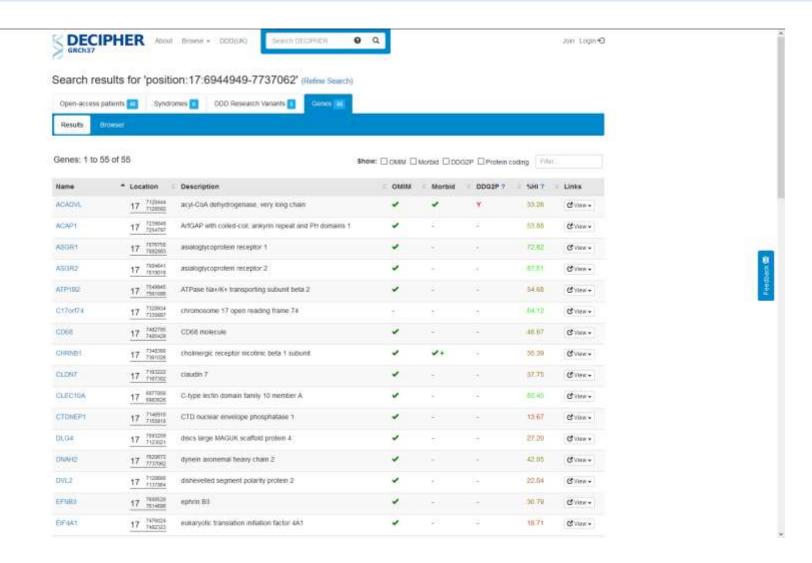
How to code that case?

Databases - ECARUCA

http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.jsp



https://decipher.sanger.ac.uk/



Search results: 1 to 48 of 48 Filter...

DECIPHER ID	Variant \$	Sex \$	Size \$	Pathogenicity Contribution ?	Inheritance \$	Phenotype(s)	Patient Open-Access Variants	Contact
2009	17 6953276 7793076 loss	46XY	839.80 kb	Unknown	De novo constitutive	Cerebral atrophy, Delayed speech and language development, Hydrocele testis, Intellectual disability, Micropenis, Plagiocephaly, Spina bifida occulta	2	M
2055	17 7081062 7282862 gain	46XY	201.80 kb	Unknown	Inherited from normal parent	Intellectual disability	91	
2173	17 6953276 7658354 loss	46XY	705.08 kb	Unknown	De novo constitutive	Intellectual disability	1	
2203	17 3294806 7122528 loss	46XY	3.83 Mb	Unknown	De novo constitutive	Delayed speech and language development, Flexion contracture, Intellectual disability, Muscle weakness, Myopia, Narrow forehead, Strabismus	2	
2346	17 7113664 7400253 deletion	46XX	286.59 kb	Unknown	De novo constitutive	Intellectual disability, Leukodystrophy, Muscular hypotonia, Nystagmus, Scoliosis, Seizures	1	
2857	17 46285 7031638 gain	other	6.99 Mb	Unknown	De novo constitutive		1	
3474	17 7050325 7268888 deletion	46XX	218.56 kb	Unknown	De novo constitutive	Arachnodactyly, Delayed speech and language development, Intellectual disability, Joint laxity, Microcephaly, Micrognathia, Prominent nasal bridge, Triangular face	1	M
4155	17 6840241 7828868 deletion	46XX	988.63 kb	Unknown	De novo constitutive	Broad forehead, Cerebral atrophy, Convex nasal ridge, Delayed speech and language development, Feeding difficulties in infancy, Hypertelorism, Intellectual disability, Joint laxity, Low-set ears, Microcephaly, Multiple joint dislocation, Myopia, Short hard palate, Wide nasal bridge	1	X

Challenges

International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for ;2016

Chapter XVII

Congenital malformations, deformations and chromosomal abnormalities (Q00-Q99)

Chromosomal abnormalities, not elsewhere classified (Q90-Q99)

Q90	Down syndrome
Q90.0	Trisomy 21, meiotic nondisjunction
Q90.1	Trisomy 21, mosaicism (mitotic nondisjunction)
Q90.2	Trisomy 21, translocation
Q90.9	Down syndrome, unspecified
	Trisomy 21 NOS

Q91	Edwards syndrome and Patau syndrome
Q91.0	Trisomy 18, meiotic nondisjunction
Q91.1	Trisomy 18, mosaicism (mitotic nondisjunction)
Q91.2	Trisomy 18, translocation
Q91.3	Edwards syndrome, unspecified
Q91.4	Trisomy 13, meiotic nondisjunction
Q91.5	Trisomy 13, mosaicism (mitotic nondisjunction)
Q91.6	Trisomy 13, translocation
091.7	Patau syndrome, unspecified

Challenges

Q92	Other trisomies and partial trisomies of the autosomes, not elsewhere classified					
	Incl.: unbalanced translocations and insertions					
	Excl.: trisomies of chromosomes 13, 18, 21 (Q90-Q91)					
Q92.0	Whole chromosome trisomy, meiotic nondisju	ınction				
Q92.1	Whole chromosome trisomy, mosaicism (mito	otic nondisjunctio	on)			
Q92.2	Major partial trisomy					
	Whole arm or more duplicated.					
Q92.3	Minor partial trisomy					
	Less than whole arm duplicated.					
Q92.4	Duplications seen only at prometaphase					
Q92.5	Duplications with other complex rearrangement	ents				
Q92.6	Extra marker chromosomes					
Q92.7	Triploidy and polyploidy					
Q92.8	Other specified trisomies and partial trisomie	s of autosomes				
Q92.9	Trisomy and partial trisomy of autosomes, un	specified				
Q93	93 Monosomies and deletions from the autosomes, not elsewhere classified					
Q93.0						
Q93.1	Whole chromosome monosomy, mosaicism (r	-	ction)			
Q93.2	Chromosome replaced with ring or dicentric	D82	Immunodeficiency associated with other major defects			
Q93.3	Deletion of short arm of chromosome 4	D82				
	Wolff-Hirschorn syndrome		Excl.: ataxia telangiectasia [Louis-Bar] (G11.3)			
Q93.4	Deletion of short arm of chromosome 5	D82.0	Wiskott-Aldrich syndrome			
	Cri-du-chat syndrome		Immunodeficiency with thrombocytopenia and eczema			
Q93.5	Other deletions of part of a chromosome					
	Angelman syndrome	D82.1	Di George syndrome			
Q93.6	Deletions seen only at prometaphase		Pharyngeal pouch syndrome			
Q93.7	Deletions with other complex rearrangement	5	Thymic:			
Q93.8	Other deletions from the autosomes		alymphoplasia			
Q93.9	Deletion from autosomes, unspecified		 aplasia or hypoplasia with immunodeficiency 			

New reporting tool - CZE

Challenges – Down syndrome

Down syndrome – 47,XY+21

ICD-10: **Q900**

ORPHA: 870

OMIM: 190685

SIEM: NA

Down syndrome - 46,XY,der(14;21),+21

ICD-10: **Q902**

ORPHA: 870

OMIM: 190685

SIEM: NA

Challenges – Turner syndrome

Q96	Turner syndrome	100 40	
	Excl.: Noonan syndrome (<u>087.1</u>)	ICD-10	
Q96.0	Karyotype 45,X		
Q96.1	Karyotype 46,X iso (Xq)		
Q96.2	Karyotype 46,X with abnormal sex chromosome, except iso (Xq)		
Q96.3	Mosaicism, 45,X/46,XX or XY		- *
Q96.4	Mosaicism, 45,X/other cell line(s) with abnormal sex chromosome		No OWIM UL
Q96.8	Other variants of Turner syndrome		Noon
Q96.9	Turner syndrome, unspecified		-

ORPHANET

:: Turner syndrome

ORPHA881		ICD-10:	Q96.0 Q96.1 Q96.2 Q96.3 Q96.4 Q96.8
Synonym(s):	45,X syndrome 45,X/46,XX syndrome	OMIM:	Q96.9 -
Prevalence:	1-5 / 10 000	UMLS:	C0041408
Inheritance:	Not applicable or Unknown	MeSH: MedDRA:	D014424 10045181
Age of onset:	Infancy Neonatal Antenatal Childhood		

:: Turner syndrome due to structural X chromosome anomalies

ODDIIA00440			
ORPHA99413		ICD-10:	Q96.1 Q96.2
Synonym(s):	-	OMIM:	-
Prevalence:	-	UMLS:	-
Inheritance:	-	MeSH:	-
Age of onset:	-	MedDRA:	-

Challenges – Rare chromosomal CNV

Potocki-Lupski syndrome

:: 17p11.2 microduplication syndrome

0001144740			
ORPHA1713		ICD-10:	Q92.3
Synonym(s):	Potocki-Lupski syndrome	OMIM:	610883 [/]
	Trisomy 17p11.2	UMLS:	C2931246
Prevalence:	-	MeSH:	C536578
Inheritance:	-	MedDRA:	-
Age of onset:	-		

#610883

POTOCKI-LUPSKI SYNDROME; PTLS

Alternative titles; symbols

CHROMOSOME 17p11.2 DUPLICATION SYNDROME

Gene-Phenotype Relationships

Location	**	Phenotype MIM number		Phenotype mapping key
17p11.2	Potocki-Lupski syndrome	610883	IC	4

Clinical Synopsis

ICD-10: **Q923**

ORPHA: 1713

OMIM: 610889

SIEM: NA

Conclusions

Detailed research on VUS.

Testing of the parents.

Follow up (checking new information).

Detailed counseling.

Information for GP.

Conclusions

Classification:

Existing (most appropriate) code for particular diagnose (somewhere).

ICD-10 – NS codes.

Karyotype formulas in registires?

Thank you for your attention!

antonin.sipek@lf1.cuni.cz

http://www.vrozene-vady.cz/